Hệ Mặt Trời – Wikipedia tiếng Việt

” Solar ” đổi hướng tới đây. Đối với tên của ca sĩ, xem Solar ( ca sĩ ). Đối với bài về nhóm nhạc, xem Lunarsolar

Hệ Mặt Trời (hay Thái Dương Hệ)[a] là một hệ hành tinh có Mặt Trời ở trung tâm và các thiên thể nằm trong phạm vi lực hấp dẫn của Mặt Trời, tất cả chúng được hình thành từ sự suy sụp của một đám mây phân tử khổng lồ cách đây gần 4,6 tỷ năm. Đa phần các thiên thể quay quanh Mặt Trời, và khối lượng tập trung chủ yếu vào 8 hành tinh[e] có quỹ đạo gần tròn và mặt phẳng quỹ đạo gần trùng khít với nhau gọi là mặt phẳng hoàng đạo. 4 hành tinh nhỏ vòng trong gồm: Sao Thủy, Sao Kim, Trái Đất và Sao Hỏa – người ta cũng còn gọi chúng là các hành tinh đá do chúng có thành phần chủ yếu từ đá và kim loại. 4 hành tinh khí khổng lồ vòng ngoài có khối lượng lớn hơn rất nhiều so với 4 hành tinh vòng trong. Hai hành tinh lớn nhất, Sao Mộc và Sao Thổ có thành phần chủ yếu từ heli và hiđrô; và hai hành tinh nằm ngoài cùng, Sao Thiên Vương và Sao Hải Vương có thành phần chính từ băng, như nước, amonia và methan, và đôi khi người ta lại phân loại chúng thành các hành tinh băng khổng lồ. Có 6 hành tinh và 3 hành tinh lùn có các vệ tinh tự nhiên quay quanh.[b] Các vệ tinh này được gọi là “Mặt Trăng” theo tên gọi của Mặt Trăng của Trái Đất. Mỗi hành tinh vòng ngoài còn có các vành đai hành tinh chứa bụi, hạt và vật thể nhỏ quay xung quanh.

Hệ Mặt Trời cũng chứa 2 vùng tập trung các thiên thể nhỏ hơn. Vành đai tiểu hành tinh nằm giữa Sao Hỏa và Sao Mộc, có thành phần tương tự như các hành tinh đá với đa phần là đá và kim loại. Bên ngoài quỹ đạo của Sao Hải Vương là các vật thể ngoài Sao Hải Vương có thành phần chủ yếu từ băng như nước, amonia, methan. Giữa 2 vùng này, có 5 thiên thể điển hình về kích cỡ, Ceres, Pluto, Haumea, Makemake và Eris, được coi là đủ lớn đủ để có dạng hình cầu dưới ảnh hưởng của chính lực hấp dẫn của chúng, và được các nhà thiên văn phân loại thành hành tinh lùn.[e] Ngoài ra có hàng nghìn thiên thể nhỏ nằm giữa 2 vùng này, có kích thước thay đổi, như sao chổi, centaurs và bụi liên hành tinh, chúng di chuyển tự do giữa 2 vùng này.

Hệ Mặt Trời – Wikipedia tiếng Việt

Bạn đang đọc: Hệ Mặt Trời – Wikipedia tiếng Việt

Mặt Trời phát ra các dòng vật chất plasma, được gọi là gió Mặt Trời, dòng vật chất này tạo ra một bong bóng gió sao trong thiên nhiên và môi trường liên sao gọi là nhật quyển, nó lan rộng ra ra đến tận biên giới của đĩa phân tán. Đám mây Oort giả thuyết, được coi là nguồn cho các sao chổi chu kỳ luân hồi dài, hoàn toàn có thể sống sót ở khoảng cách gần 1.000 lần xa hơn nhật quyển .Chuyển động theo quỹ đạo elip của các hành tinh .

Cấu trúc

1. Các hành tinh vòng trong, vành đai tiểu hành tinh và Sao Mộc2. Các hành tinh vòng ngoài, Sao Diêm Vương, vành đai Kuiper và 3. Quỹ đạo của 90377 Sedna4. Vòng trong Quỹ đạo của các thiên thể trong hệ Mặt Trời theo tỷ lệ (theo chiều kim đồng hồ từ phía trên bên trái):1. Các hành tinh vòng trong, vành đai tiểu hành tinh và Sao Mộc2. Các hành tinh vòng ngoài, Sao Diêm Vương, vành đai Kuiper và 90377 Sedna 3. Quỹ đạo của 90377 Sedna4. Vòng trong đám mây Oort So sánh kích cỡ 8 hành tinh .

Thiên thể chính trong hệ Mặt Trời là Mặt Trời, 1 ngôi sao kiểu G2 thuộc dãy chính chứa 99,86% khối lượng của cả hệ và vượt trội về lực hấp dẫn.[10] 4 hành tinh khí khổng lồ của hệ chiếm 99% khối lượng còn lại, và khối lượng Sao Mộc kết hợp với khối lượng Sao Thổ thì chiếm >90% so với khối lượng tất cả các thiên thể khác.[c]

Hầu hết các thiên thể lớn có mặt phẳng quỹ đạo gần trùng mặt phẳng quỹ đạo của Trái Đất, gọi là mặt phẳng hoàng đạo. Mặt phẳng quỹ đạo của các hành tinh nằm rất gần với mặt phẳng hoàng đạo, trong khi các sao chổi và vật thể trong vành đai Kuiper thường có mặt phẳng quỹ đạo nghiêng 1 góc lớn so với mặt phẳng hoàng đạo. [ 11 ] [ 12 ] Mọi hành tinh và phần nhiều các thiên thể khác quay quanh Mặt Trời theo chiều tự quay của Mặt Trời ( ngược chiều kim đồng hồ đeo tay, khi nhìn từ trên cực Bắc của Mặt Trời ). Nhưng cũng có Một vài ít ngoại lệ, như sao chổi Halley lại quay theo chiều ngược lại .

Cấu trúc tổng thể của các vùng trong hệ Mặt Trời được vẽ ở hình bên chứa Mặt Trời, 4 hành tinh vòng trong tương đối nhỏ được bao xung quanh bởi 1 vành đai các tiểu hành tinh đá, 4 hành tinh khí khổng lồ được bao xung quanh bởi vành đai Kuiper chứa các thiên thể băng đá. Các nhà thiên văn học đôi khi không chính thức chia cấu trúc hệ Mặt Trời thành các vùng tách biệt. Hệ Mặt Trời bên trong bao gồm 4 hành tinh đá và vành đai tiểu hành tinh chính. Hệ Mặt Trời bên ngoài nằm bên ngoài vành đai tiểu hành tinh chính, bao gồm 4 hành tinh khí khổng lồ.[13] Từ khi khám phá ra vành đai Kuiper, phần bên ngoài của hệ Mặt Trời được coi là một vùng riêng biệt chứa các vật thể nằm bên ngoài Sao Hải Vương.[14]

các định luật của Kepler về chuyển động thiên thể miêu tả quỹ đạo của các vật thể quay quanh Mặt Trời. Theo định luật Kepler, mỗi vật thể chuyển động theo quỹ đạo hình elip với Mặt Trời là 1 tiêu điểm. Các vật thể gần Mặt Trời hơn (với bán trục lớn nhỏ hơn) sẽ chuyển động nhanh hơn, do chúng chịu nhiều ảnh hưởng của trường hấp dẫn Mặt Trời hơn. Trên quỹ đạo elip, khoảng cách từ thiên thể tới Mặt Trời thay đổi trong 1 chu kỳ quỹ đạo. Vị trí thiên thể gần nhất với Mặt Trời gọi là cận điểm quỹ đạo, trong khi điểm trên quỹ đạo xa nhất so với Mặt Trời gọi là viễn điểm quỹ đạo. Trong hệ Mặt Trời, quỹ đạo của các hành tinh gần tròn, trong khi nhiều sao chổi, tiểu hành tinh và các vật thể thuộc vành đai Kuiper có quỹ đạo hình elip rất dẹt.

Khoảng cách trong thực tiễn giữa các hành tinh là rất lớn, Tuy vậy nhiều minh họa về hệ Mặt Trời vẽ khoảng cách quỹ đạo của các hành tinh đều nhau. Thực tế, so với các hành tinh hay vành đai nằm càng xa Mặt Trời, thì khoảng cách giữa quỹ đạo của chúng càng lớn. Thí dụ, Sao Kim có khoảng cách đến Mặt Trời lớn hơn 0,33 đơn vị chức năng thiên văn ( AU ) [ d ] so với khoảng cách từ Sao Thủy đến Mặt Trời, trong khi của Sao Thổ cách xa 4,3 AU so với Sao Mộc, và Sao Hải Vương cách xa 10,5 AU so với Sao Thiên Vương. Nhiều nỗ lực đã thực thi nhằm mục tiêu xác lập đối sánh tương quan khoảng cách giữa quỹ đạo của các hành tinh ( Thí dụ, quy luật Titius-Bode ), [ 15 ] nhưng chưa có 1 triết lý nào được đồng ý .

Đa phần các hành tinh trong hệ Mặt Trời sở hữu 1 hệ thứ cấp của chúng, có các vệ tinh tự nhiên hoặc vành đai hành tinh quay quanh hành tinh. Các vệ tinh này còn được gọi là Mặt Trăng. 2 vệ tinh tự nhiên Ganymede của Sao Mộc và Titan của Sao Thổ còn lớn hơn cả Sao Thủy). Các hành tinh khí khổng lồ như Sao Mộc, Sao Thổ, Sao Thiên Vương và Sao Hải Vương, thậm chí cả 1 vệ tinh của Sao Thổ còn có các vành đai hành tinh là các dải mỏng chứa các hạt vật chất nhỏ quay quanh chúng. Hầu hết các vệ tinh tự nhiên lớn nhất đều quay đồng bộ với một mặt bán cầu luôn hướng về phía hành tinh.

các thiên thể vòng trong có thành phần chủ yếu là đá,[16] tên gọi chung cho các hợp chất có điểm nóng chảy cao, như silicat, sắt hay nikel, tất cả vẫn duy trì ở trạng thái rắn từ khi trong giai đoạn tinh vân tiền hành tinh.[17] Sao Mộc và Sao Thổ có thành phần chủ yếu là khí, thuật ngữ thiên văn học cho các vật liệu có điểm nóng chảy cực thấp và áp suất hơi cao như hiđrô, heli, và neon, chúng luôn luôn ở pha khí trong các tinh vân.[17] Băng, như nước, methan, ammoniac, hiđrô sulfide và cacbon dioxide,[16] có điểm nóng chảy lên tới vài trăm Kelvin, trong khi pha của chúng lại phụ thuộc vào áp suất và nhiệt độ môi trường xung quanh.[17] Chúng có thể tìm thấy dưới dạng băng, chất lỏng, hay khí trong nhiều nơi thuộc hệ Mặt Trời, trong khi trong các tinh vân chúng chỉ ở trạng thái băng (rắn) hoặc khí.[17] Các chất băng đá là thành phần chủ yếu trên các Mặt Trăng của các hành tinh khí khổng lồ, cũng như chiếm phần lớn trong thành phần của Sao Thiên Vương và Sao Hải Vương (gọi là các “hành tinh băng đá khổng lồ”) và trong rất nhiều các vật thể nhỏ nằm bên ngoài quỹ đạo của Sao Hải Vương.[16][18] Các chất khí và băng trong thiên văn học cùng được gọi là chất dễ bay hơi (volatiles).[19]

Mặt Trời

Mặt Trời là ngôi sao 5 cánh ở TT và điển hình nổi bật nhất trong Thái Dương Hệ. Khối lượng khổng lồ của nó ( 332.900 lần khối lượng Trái Đất ) [ 20 ] tạo ra nhiệt độ và tỷ lệ đủ lớn tại lõi để xảy ra phản ứng tổng hợp hạt nhân, [ 21 ] làm giải phóng 1 lượng nguồn năng lượng khổng lồ, phần đông phát xạ vào khoảng trống dưới dạng bức xạ điện từ, với cực lớn trong dải quang phổ 400 – 700 nm mà tất cả chúng ta gọi là ánh sáng khả kiến. [ 22 ]Mặt Trời được phân loại thành sao lùn vàng kiểu G2, nhưng tên gọi này hay gây ra sự hiểu nhầm khi so sánh nó với đại đa số các sao trong Ngân Hà, Mặt Trời lại là 1 ngôi sao 5 cánh lớn và sáng. [ 23 ] Các ngôi sao 5 cánh được phân loại theo biểu đồ Hertzsprung-Russell, biểu đồ biểu lộ độ sáng của sao với nhiệt độ mặt phẳng của nó. Nói chung, các sao sáng hơn thì nóng hơn. Mặt Trời nằm ở bên phải của đoạn giữa 1 dải gọi là dải chính trên biểu đồ. Tuy vậy, số lượng các sao sáng hơn và nóng hơn Mặt Trời là hiếm, trong khi phần lớn là các sao mờ hơn và lạnh hơn, gọi là sao lùn đỏ, chúng chiếm tới 85 % số lượng sao trong dải thiên hà. [ 23 ] [ 24 ]Người ta tin rằng với vị trí của Mặt Trời trên dải chính như vậy thì đây là một ngôi sao 5 cánh đang trong ” đời sống mãnh liệt “, nó vẫn chưa bị hết sạch nguồn nguyên vật liệu hiđrô cho các phản ứng tổng hợp hạt nhân. Mặt Trời đang sáng hơn ; trong buổi đầu của sự tiến hóa nó chỉ sáng bằng 70 % so với độ sáng thời nay. [ 25 ]Mặt Trời còn là sao loại I về đặc tính sắt kẽm kim loại ; do nó sinh ra trong tiến trình muộn của sự tiến hóa ngoài hành tinh, và nó chứa nhiều nguyên tố nặng hơn hiđrô và heli ( trong thiên văn học, các nguyên tố nặng hơn hiđrô và heli được gọi là nguyên tố ” sắt kẽm kim loại ” ) so với các ngôi sao 5 cánh già loại II. [ 26 ] Các nguyên tố nặng hơn hiđrô và heli được hình thành tại lõi của các sao già và sao nổ tung, do vậy thế hệ sao tiên phong đã phải chết trước khi ngoài hành tinh được làm giàu bởi các nguyên tố nặng này. các sao già nhất chứa rất ít sắt kẽm kim loại, trong khi các sao sinh muộn hơn có nhiều hơn. Tính sắt kẽm kim loại cao được cho là yếu tố quan trọng cho sự tăng trưởng thành một hệ hành tinh quay quanh Mặt Trời, do các hành tinh hình thành từ sự bồi tụ các nguyên tố ” sắt kẽm kim loại “. [ 27 ]

Môi trường liên hành tinh

Cùng với ánh sáng, Mặt Trời phát ra 1 dòng liên tục các hạt tích điện ( plasma ) gọi là gió Mặt Trời. Dòng hạt này trải rộng ra bên ngoài với tốc độ gần 1,5 triệu km / h, [ 28 ] tạo ra vùng khí quyển loãng ( Nhật quyển ) thấm vào hàng loạt Hệ Mặt Trời đến khoảng cách tối thiểu 100 AU. [ 29 ] Đây chính là thiên nhiên và môi trường liên hành tinh. Các bão từ trên mặt phẳng Mặt Trời, như bùng nổ Mặt Trời ( solar flare ) và sự giải phóng vật chất ở vành nhật hoa ( coronal mass ejection ), gây nhiễu loạn nhật quyển, tạo ra thời tiết khoảng trống. [ 30 ] Cấu trúc lớn nhất bên trong nhật quyển là dải dòng điện nhật quyển ( heliospheric current sheet ), 1 dạng xoắn ốc được tạo ra do hoạt động giải trí của từ trường quay của Mặt Trời lên môi trường tự nhiên liên hành tinh. [ 31 ] [ 32 ] Gió Mặt Trời tiếp xúc với từ quyển của Trái ĐấtTừ trường Trái Đất bảo vệ bầu khí quyển của nó không bị gió Mặt Trời tước đi. Sao Kim và Sao Hỏa có từ trường rất nhỏ hoặc không sống sót, do vậy gió Mặt Trời từ từ đã thổi bay bầu khí quyển của các hành tinh này. [ 33 ] Sự kiện đại giải phóng vật chất ở vành nhật hoa và các sự kiện tương tự đẩy một lượng lớn vật chất từ mặt phẳng Mặt Trời vào khoảng trống. Tương tác của dải dòng điện nhật quyển và gió Mặt Trời với từ trường của Trái Đất tạo ra các va chạm của dòng các hạt tích điện với phía trên của bầu khí quyển Trái Đất, tạo ra hiện tượng kỳ lạ cực quang ở các vùng gần các cực từ địa lý .Tia vũ trụ có nguồn gốc từ bên ngoài hệ Mặt Trời. Nhật quyển là lá chắn bảo vệ một phần cho hệ Mặt Trời, và từ trường của các hành tinh cũng ngăn ngừa bớt các tia vũ trụ cho hành tinh. Mật độ của tia ngoài hành tinh trong môi trường tự nhiên liên hành tinh và cường độ của từ trường Mặt Trời đổi khác theo thời hạn, do vậy mức độ các tia vũ trụ trong hệ Mặt Trời cũng biến hóa mặc dầu người ta không biết rõ lượng biến hóa là bao nhiêu. [ 34 ]Môi trường liên hành tinh cũng chứa tối thiểu 2 vùng bụi ngoài hành tinh có hình đĩa. Đĩa thứ nhất, đám mây bụi liên hành tinh nằm ở hệ Mặt Trời bên trong và gây ra ánh sáng hoàng đạo. Đĩa này có năng lực hình thành bên trong vành đai tiểu hành tinh gây ra bởi sự va chạm với các hành tinh. [ 35 ] Đĩa thứ 2 nằm trong khoảng chừng từ 10-40 AU, và có lẽ rằng được tạo ra từ sự va chạm tương tự như với bên trong vành đai Kuiper. [ 36 ] [ 37 ]

Vòng trong Hệ Mặt Trời

Vòng trong Hệ Mặt Trời bên trong gồm có các hành tinh đất đá và vành đai tiểu hành tinh. [ 38 ], có thành phần đa phần từ silicat và các sắt kẽm kim loại. Các thiên thể thuộc vùng này nằm khá gần Mặt Trời ; nửa đường kính của vùng này nhỏ hơn khoảng cách giữa Sao Mộc và Sao Thổ .

Các hành tinh vòng trong

4 hành tinh vòng trong là hành tinh đá có trong lượng riêng khá cao, với thành phần từ đá, có ít hoặc không có Mặt Trăng, và không có hệ vành đai quay quanh như các hành tinh vòng ngoài. Thành phần chính của chúng là các khoáng vật khó nóng chảy, như silicat tạo nên lớp vỏ và lớp phủ, và các kim loại như sắt và niken tạo nên lõi của chúng. 3 trong 4 hành tinh (Sao Kim, Trái Đất và Sao Hỏa) có bầu khí quyển đủ dày để sinh ra các hiện tượng thời tiết; tất cả đều có các hố va chạm và sự kiến tạo bề mặt như thung lũng tách giãn và núi lửa. Thuật ngữ hành tinh vòng trong không nên nhầm lẫn với hành tinh bên trong, ám chỉ các hành tinh gần Mặt Trời hơn Trái Đất (như Kim Tinh và Thủy Tinh).

Sao Thủy ( Mercury )

Sao Thủy (cách Mặt Trời khoảng 0,4 AU) là hành tinh gần Mặt Trời nhất và là hành tinh nhỏ nhất trong Hệ Mặt Trời (0,055 lần khối lượng Trái Đất). Sao Thủy không có vệ tinh tự nhiên, và nó chỉ có các đặc trưng địa chất bên cạnh các hố va chạm đó là các sườn và vách núi, có lẽ được hình thành trong giai đoạn co lại đầu tiên trong lịch sử của nó.[39] Sao Thủy hầu như không có khí quyển do các nguyên tử trong bầu khí quyển của nó đã bị gió Mặt Trời thổi bay ra ngoài không gian.[40] Hành tinh này có lõi sắt tương đối lớn và lớp phủ khá mỏng mà vẫn chưa được các nhà thiên văn giải thích được một cách đầy đủ. Có giả thuyết cho rằng lớp phủ bên ngoài đã bị tước đi sau 1 vụ va chạm khổng lồ, và quá trình bồi tụ vật chất của Sao Thủy bị ngăn chặn bởi năng lượng của Mặt Trời trẻ.[41][42]

Sao Kim ( Venus )

Sao Kim (cách Mặt Trời khoảng 0,7 AU) có kích cỡ khá gần với kích thước Trái Đất (với khối lượng bằng 0,815 lần khối lượng Trái Đất) và đặc điểm cấu tạo giống Trái Đất, nó có 1 lớp phủ silicat dày bao quanh 1 lõi sắt. Sao Kim có 1 bầu khí quyển dày và có các chứng cứ cho thấy hành tinh này còn sự hoạt động của địa chất bên trong nó. Tuy vậy, Sao Kim khô hơn Trái Đất rất nhiều và mật độ bầu khí quyển của nó gấp 90 lần mật độ bầu khí quyển của Trái Đất. Sao Kim không có vệ tinh tự nhiên. Nó là hành tinh nóng nhất trong hệ Mặt Trời với nhiệt độ của bầu khí quyển trên 400 °C, Nguyên do chủ yếu là do hiệu ứng nhà kính của bầu khí quyển.[43] Không có dấu hiệu cụ thể về hoạt động địa chất gần đây được phát hiện trên Sao Kim (1 lý do là nó có bầu khí quyển quá dày), mặt khác hành tinh này không có từ trường để ngăn chặn sự suy giảm đáng kể của bầu khí quyển, và điều này gợi ra rằng bầu khí quyển của nó thường xuyên được bổ sung bởi các vụ phun trào núi lửa.[44]

Trái Đất ( Earth )

Trái Đất (cách Mặt Trời 1 AU) là hành tinh lớn nhất và có mật độ lớn nhất trong số các hành tinh vòng trong, cũng là hành tinh duy nhất mà chúng ta biết còn có các hoạt động địa chất gần đây, và là hành tinh duy nhất trong vũ trụ được biết đến là nơi có sự sống tồn tại.[45] Trái Đất cũng là hành tinh đá duy nhất có thủy quyển lỏng, và cũng là hành tinh duy nhất nơi quá trình kiến tạo mảng đã được quan sát. Bầu khí quyển của Trái Đất cũng khác căn bản so với các hành tinh khác với thành phần phân tử oxy tự do thiết yếu cho sự sống chiếm tới 21% trong bầu khí quyển.[46] Trái Đất có 1 vệ tinh tự nhiên là Mặt Trăng, nó là vệ tinh tự nhiên lớn nhất trong số các vệ tinh của các hành tinh đá trong hệ Mặt Trời.

Sao Hỏa ( Mars )

Sao Hỏa (cách Mặt Trời khoảng 1,5 AU) có kích thước nhỏ hơn Trái Đất và Sao Kim (khối lượng bằng 0,107 lần khối lượng Trái Đất). Nó có 1 bầu khí quyển chứa chủ yếu là cacbon dioxide (CO2) với áp suất khí quyển tại bề mặt bằng 6,1 millibar (gần bằng 0,6% áp suất khí quyển tại bề mặt của Trái Đất).[47] Trên bề mặt hành tinh đỏ có các ngọn núi khổng lồ như Olympus Mons (cao nhất trong hệ Mặt Trời) và các rặng thung lũng như Valles Marineris, với các hoạt động địa chất có thể đã tồn tại cho đến cách đây 2 triệu năm về trước.[48] Bề mặt của nó có màu đỏ do trong đất bề mặt có nhiều sắt oxide (gỉ).[49] Sao Hỏa có 2 Mặt Trăng rất nhỏ (Deimos và Phobos) được cho là các tiểu hành tinh bị Sao Hỏa bắt giữ.[50] Sao Hỏa là hành tinh có cấu tạo gần giống Trái Đất nhất.

Vành đai tiểu hành tinh

Tiểu hành tinh hầu hết là các vật thể nhỏ trong hệ Mặt Trời [ e ] với thành phần hầu hết là đá khó nóng chảy và khoáng vật sắt kẽm kim loại. [ 51 ]Vành đai tiểu hành tinh chính nằm giữa quỹ đạo của Sao Hỏa và Sao Mộc, khoảng cách từ 2,3 – 3,3 AU tính từ Mặt Trời. Các nhà thiên văn cho rằng vành đai này là tàn dư từ sự hình thành hệ Mặt Trời mà chúng không hề hợp lại thành 1 thiên thể do sự giao thoa mê hoặc với Sao Mộc. [ 52 ]Các tiểu hành tinh có kích cỡ từ vài trăm kilômét đến kích cỡ vi mô. Mọi tiểu hành tinh, ngoại trừ Ceres, được phân loại thành các thiên thể nhỏ trong hệ Mặt Trời, nhưng 1 số ít tiểu hành tinh như Vesta và Hygieia hoàn toàn có thể được phân loại lại thành hành tinh lùn nếu chúng có biểu lộ đã trải qua trạng thái cân đối thủy tĩnh. [ 53 ]Vành đai tiểu hành tinh chứa vài chục nghìn, hoàn toàn có thể tới vài triệu các vật thể có đường kính trên 1 kilômét. [ 54 ] Mặc dù thế, tổng khối lượng của vành chính chỉ hơi lớn hơn 1/1000 khối lượng của Trái Đất. [ 55 ] Vành đai chính có các tiểu hành tinh phân bổ khá thưa thớt ; các tàu thám hiểm khoảng trống dễ vượt qua vành đai này mà không bị va chạm với các vật thể. Tiểu hành tinh với đường kính từ 10 − 4 – 10 m được phân loại thành thiên thạch. [ 56 ]

Ceres

Ceres (khoảng cách đến Mặt Trời 2,77 AU) là thiên thể lớn nhất trong vành đai tiểu hành tinh và được xếp thành hành tinh lùn.[e] Đường kính của nó hơi nhỏ hơn 1.000 km và nó có khối lượng đủ lớn để cho lực hấp dẫn của chính nó kéo các vật liệu trên Ceres về tâm để tạo thành hình cầu. Ceres đã từng được coi là hành tinh khi nó được phát hiện vào thế kỷ XIX, nhưng sau đó được phân loại lại thành tiểu hành tinh vào thập niên 1850 khi các quan sát kĩ lưỡng đã cho thấy có thêm nhiều tiểu hành tinh khác.[57] Năm 2006, Ceres được phân loại thành hành tinh lùn.

Nhóm tiểu hành tinh

các tiểu hành tinh trong vành đai chính được chia thành nhóm tiểu hành tinh và họ tiểu hành tinh dựa trên các đặc tính quỹ đạo của chúng. Mặt Trăng tiểu hành tinh là các tiểu hành tinh quay quanh tiểu hành tinh lớn hơn. Chúng không được phân biệt rõ ràng với Mặt Trăng của các hành tinh, nhiều lúc các Mặt Trăng tiểu hành tinh có kích cỡ lớn bằng tiểu hành tinh mà nó quay quanh. Vành đai tiểu hành tinh cũng chứa sao chổi mà có năng lực các sao chổi từ vành đai này là nguồn cung ứng nước cho Trái Đất. [ 58 ]Các tiểu hành tinh Troia nằm ở vùng lân cận với các điểm Lagrange L4 và L5 của Sao Mộc ( các vùng không thay đổi về mê hoặc, hoàn toàn có thể đi trước hoặc theo sau hành tinh trên quỹ đạo của nó ) ; thuật ngữ ” thiên thể Troia ” cũng sử dụng cho các vật thể nhỏ so với các hành tinh khác hoặc cho các vệ tinh tự tạo của Trái Đất. Các tiểu hành tinh Hilda có cộng hưởng quỹ đạo 2 : 3 với Sao Mộc ; tức là chúng hoạt động quanh Mặt Trời được 3 vòng quỹ đạo thì Sao Mộc quay quanh Mặt Trời được 2 vòng quỹ đạo. [ 59 ]Vòng trong hệ Mặt Trời cũng có các tiểu hành tinh gần Trái Đất hoạt động hỗn loạn, rất nhiều trong số chúng có quỹ đạo cắt với quỹ đạo của các hành tinh vòng trong. [ 60 ] [ 61 ]

Vòng ngoài Hệ Mặt Trời

Vùng bên ngoài của hệ Mặt Trời gồm các hành tinh khí khổng lồ và các vệ tinh tự nhiên của chúng. Nhiều sao chổi chu kỳ luân hồi ngắn, gồm có các tiểu hành tinh centaur, cũng nằm trong vùng này. Do khoảng cách đến Mặt Trời lớn, các thiên thể lớn trong vùng bên ngoài hệ Mặt Trời chứa tỉ lệ cao các chất dễ bay hơi như nước, amonia và methan so với các vật tư đá của thành phần các hành tinh vòng trong hệ Mặt Trời, và khi nhiệt độ càng thấp được cho phép các hợp chất dễ bay hơi sống sót được dưới dạng rắn .

Hành tinh vòng ngoài

4 hành tinh khí khổng lồ trong Hệ Mặt Trời so với Mặt Trời theo tỉ lệ

4 hành tinh vòng ngoài, hay 4 hành tinh khí khổng lồ (hoặc các hành tinh kiểu Mộc Tinh), chiếm tới 99% tổng khối lượng của các thiên thể quay quanh Mặt Trời.[c] Sao Mộc và Sao Thổ là 2 hành tinh lớn nhất và chứa đại đa số hiđrô và heli; Sao Thiên Vương và Sao Hải Vương có khối lượng nhỏ hơn (hành tinh vòng ngoài không nên nhầm lẫn với thuật ngữ hành tinh bên ngoài, ám chỉ các hành tinh nằm bên ngoài quỹ đạo của Trái Đất trong đó bao gồm cả Sao Hỏa và các hành tinh vòng ngoài.

Sao Mộc ( Dòng Yamaha Jupiter )

Sao Mộc (khoảng cách đến Mặt Trời 5,2 AU), với khối lượng bằng 318 lần khối lượng Trái Đất và bằng 2,5 lần tổng khối lượng của 7 hành tinh còn lại trong Thái Dương Hệ. Mộc Tinh có thành phần chủ yếu hiđrô và heli. Nhiệt lượng khổng lồ từ bên trong Sao Mộc tạo ra Một vài đặc trưng bán vĩnh cửu trong bầu khí quyển của nó, như các dải mây và Vết đỏ lớn.Sao Mộc có 63 vệ tinh đã biết. 4 vệ tinh lớn nhất, Ganymede, Callisto, Io, và Europa (các vệ tinh Galileo) có các đặc trưng tương tự như các hành tinh đá, như núi lửa và nhiệt lượng từ bên trong.[63] Ganymede, vệ tinh tự nhiên lớn nhất trong hệ Mặt Trời, có kích thước lớn hơn Sao Thủy.

Sao Thổ ( Saturn )

Sao Thiên Vương ( Uranus )

Sao Hải Vương ( Neptune )

Sao chổi ( Comet )

Sao chổi là các vật thể nhỏ trong Thái Dương Hệ,[e] đường kính điển hình chỉ vài kilômét, thành phần chủ yếu là các hợp chất băng dễ bay hơi. Chúng có độ lệch tâm quỹ đạo khá lớn, đa phần có điểm cận nhật nằm bên trong quỹ đạo của các hành tinh vòng trong và điểm viễn nhật nằm bên ngoài Pluto. Khi 1 sao chổi đi vào vùng hệ Mặt Trời bên trong, do đến gần Mặt Trời hơn làm cho bề mặt băng của nó chuyển tới trạng thái thăng hoa và ion hóa, tạo ra một dải bụi và khí dài thoát ra từ nhân sao chổi, hay là đuôi sao chổi, và có thể nhìn thấy bằng mắt thường.

Sao chổi chu kỳ luân hồi ngắn có chu kỳ luân hồi nhỏ hơn 200 năm. Sao chổi chu kỳ luân hồi dài có chu kỳ luân hồi hàng nghìn năm. Sao chổi chu kỳ luân hồi ngắn được tin là có nguồn gốc từ vành đai Kuiper trong khi các sao chổi chu kỳ luân hồi dài như Hale-Bopp, nó được cho là có nguồn gốc từ đám mây Oort. Nhiều nhóm sao chổi, như nhóm sao chổi Kreutz, hình thành từ sự tách vỡ của sao chổi lớn hơn. [ 68 ] Một vài sao chổi có quỹ đạo hyperbol có nguồn gốc từ ngoài Hệ Mặt Trời và yếu tố xác lập chu kỳ luân hồi quỹ đạo đúng mực của chúng là việc khó khăn vất vả. [ 69 ] Một vài sao chổi trước kia có các chất dễ bay hơi ở mặt phẳng bị thổi ra ngoài bởi gió Mặt Trời ấm được xếp loại vào tiểu hành tinh. [ 70 ]

Centaur

Centaur là các vật thể băng đá có đặc thù giống cả sao chổi và tiểu hành tinh, với bán trục lớn lớn hơn nửa đường kính quỹ đạo của Sao Mộc ( 5,5 AU ) và nhỏ hơn nửa đường kính quỹ đạo Sao Thiên Vương ( 30 AU ). Centaur lớn nhất được biết đến, 10199 Chariklo, có đường kính khoảng chừng 250 km. [ 71 ] Centaur tiên phong được phát hiện, 2060 Chiron, cũng đã được xếp loại thành sao chổi ( 95P ) do nó phát ra các dải bụi ( đuôi bụi ) khi nó đến gần Mặt Trời. [ 72 ]

Vùng bên ngoài Sao Hải Vương

Vùng bên ngoài Sao Hải Vương chứa các ” vật thể ngoài Sao Hải Vương “, và là 1 vùng còn chưa được thám hiểm nhiều. Nó gồm có phần đông các vật thể nhỏ ( thiên thể lớn nhất có đường kính chỉ bằng 1/5 so với đường kính của Trái Đất và khối lượng nhỏ hơn nhiều so với Mặt Trăng ) thành phần chính là băng và đá. Vùng này đôi lúc gọi là ” hệ Mặt Trời phía ngoài “, nhưng thuật ngữ này thường được hiểu là vùng bên ngoài vành đai tiểu hành tinh .

Vành đai Kuiper

Hình vẽ các vật thể đã biết trong vành đai Kuiper so với 4 hành tinh khí khổng lồ .Vành đai Kuiper, vùng hình thành tiên phong, là 1 vành đai lớn chứa các mảnh vụn tương tự như như vành đai tiểu hành tinh, nhưng nó chứa đa phần là băng. [ 73 ] Nó lan rộng ra từ 30-50 AU từ Mặt Trời. Trong vùng này có tối thiểu 3 hành tinh lùn và còn lại là các vật thể nhỏ trong hệ Mặt Trời. Tuy thế nhiều vật thể lớn nhất trong vành đai Kuiper, như Quaoar, Varuna, và Orcus hoàn toàn có thể sẽ được phân loại lại thành các hành tinh lùn. Các nhà thiên văn học ước đạt có trên 100.000 vật thể trong vành đai Kuiper có đường kính lớn > 50 km, nhưng tổng khối lượng của vành đai này chỉ bằng khoảng chừng 1/10 hoặc thậm chí còn 1/100 khối lượng của Trái Đất. [ 74 ] Nhiều vật thể thuộc vùng này có các vệ tinh quay quanh, [ 75 ] và nhiều vật thể có mặt phẳng quỹ đạo nằm bên ngoài mặt phẳng hoàng đạo. [ 76 ]

Vành đai Kuiper sơ bộ có thể chia thành vành đai “chính” và vành đai “cộng hưởng”.[73] Vành đai cộng hưởng có quỹ đạo liên kết với Sao Hải Vương (Thí dụ chúng quay trên quỹ đạo được 2 lần thì Sao Hải Vương đã quay trên quỹ đạo được 3 lần, hoặc 1 lần đối với 2 lần vòng quay của Sao Hải Vương). Vành đai cộng hưởng đầu tiên nằm trong cùng quỹ đạo của Sao Hải Vương. Các vật thể trong vành đai “chính” không có quỹ đạo cộng hưởng với Sao Hải Vương, nằm trong phạm vi gần 39,4-47,7 AU.[77] Các vật thể trong vành đai “chính” còn được gọi là cubewanos, bắt nguồn từ vật thể đầu tiên trong vùng này được phát hiện, (15760) 1992 QB1, và nó vẫn còn ở trạng thái gần nguyên thủy với độ lệch tâm quỹ đạo nhỏ.[78]

Sao Diêm Vương và Charon

Pluto ( khoảng cách trung bình đến Mặt Trời 39 AU ) là 1 hành tinh lùn, và là thiên thể lớn nhất đã từng được biết tới trong vành đai Kuiper. Khi nó được phát hiện ra vào năm 1930, nó đã được coi là hành tinh thứ 9 trong hệ Mặt Trời ; nhưng điều này đã đổi khác vào năm 2006 với định nghĩa mới về hành tinh. Sao Diêm Vương có quỹ đạo với độ lệch tâm lớn và nghiêng 170 so với mặt phẳng hoàng đạo với điểm cận nhật cách Mặt Trời 29,7 AU ( nằm bên trong quỹ đạo của Sao Hải Vương ) và điểm viễn nhật cách Mặt Trời 49,5 AU. Sao Diêm Vương cộng hưởng quỹ đạo 3 : 2 với Sao Hải Vương. Các vật thể trong vành đai Kuiper mà quỹ đạo có cùng đặc thù cộng hưởng này được gọi là các vật thể Plutino. [ 79 ]Charon, vệ tinh lớn nhất của Pluto, nhiều lúc được miêu tả nó là một phần của hệ đôi với Pluto, do 2 thiên thể quay quanh 1 khối tâm mê hoặc bên trên mặt phẳng của chúng ( do vậy chúng hiện lên như là quay quanh nhau ). Xa hơn Charon, 2 vệ tinh nhỏ hơn rất nhiều là Nix và Hydra quay quanh hệ này .

Haumea và Makemake

Haumea (khoảng cách trung bình đến Mặt Trời 43,34 AU), và Makemake (khoảng cách trung bình đến Mặt Trời 45,79 AU), tuy nhỏ hơn Pluto, nhưng chúng là các vật thể lớn nhất trong vành đai Kuiper chính (tức là chúng không có quỹ đạo cộng hưởng với Sao Hải Vương). Haumea là 1 vật thể có hình quả trứng với 2 vệ tinh quay quanh. Makemake là vật thể sáng nhất trong vành đai Kuiper sau Pluto. Ban đầu chúng được gán tên lần lượt là 2003 EL612005 FY9, sau đó chúng được đặt tên và phân loại thành hành tinh lùn vào năm 2008.[80] Độ nghiêng quỹ đạo của chúng lớn hơn rất nhiều so với của Pluto, lần lượt là 28° và 29°.[81]

Đĩa phân tán

Đĩa phân tán chồng lên vành đai Kuiper và lan rộng ra ra khoảng cách xa hơn được cho là nơi xuất phát của nhiều sao chổi có chu kỳ luân hồi ngắn. Các vật thể trong đĩa phân tán được cho là đã bị đẩy vào quỹ đạo không bình thường do ảnh hưởng tác động của lực mê hoặc của sự di cư ra bên ngoài của Sao Hải Vương. Hầu hết các vật thể trong đĩa phân tán ( SDOs ) có điểm cận nhật nằm trong vành đai Kuiper nhưng điểm viễn nhật cách xa 150 AU so với Mặt Trời. Quỹ đạo của SDOs cũng có độ nghiêng lớn so với mặt phẳng hoàng đạo, và thường vuông góc với nó. Một vài nhà thiên văn học coi đĩa phân tán chỉ là 1 vùng khác của vành đai Kuiper, và họ miêu tả các vật thể thuộc đĩa phân tán là ” vật thể phân tán trong vành đai Kuiper. ” [ 82 ] Một vài nhà thiên văn cũng phân loại các vật thể centaur như thể các vật thể thuộc vành đai Kuiper phân tán bên trong cùng với các vật thể phân tán bên ngoài của đĩa phân tán. [ 83 ]

Eris

Eris ( khoảng cách trung bình đến Mặt Trời 68 AU ) là vật thể lớn nhất từng được biết trong đĩa phân tán, với khối lượng lớn hơn của Sao Diêm Vương 25 % [ 84 ] và đường kính bằng với đường kính của Pluto. Nó là hành tinh lùn có khối lượng lớn nhất trong số các hành tinh lùn đã biết. Eris có 1 vệ tinh là Dysnomia. Cũng như Pluto, quỹ đạo của nó có độ lệch tâm lớn với điểm cận nhật cách Mặt Trời 38,2 AU ( gần bằng khoảng cách từ Mặt Trời đến Pluto ) và điểm viễn nhật cách Mặt Trời 97,6 AU, đồng thời mặt phẳng quỹ đạo của nó nghiêng 1 góc lớn so với mặt phẳng hoàng đạo .

các vùng xa nhất

Điểm mà hệ Mặt Trời kết thúc và môi trường liên sao bắt đầu vẫn không được định nghĩa chính xác, biên giới này được cho là nơi áp suất đẩy ra của gió Mặt Trời cân bằng với trường hấp dẫn từ Mặt Trời. Giới hạn ảnh hưởng bên ngoài của gió Mặt Trời gần bằng bốn lần khoảng cách từ Sao Diêm Vương đến Mặt Trời; vùng nhật mãn này được coi là sự bắt đầu của môi trường liên sao.[29] Tuy vậy, mặt cầu Roche của Mặt Trời, phạm vi ảnh hưởng của trường hấp dẫn của nó, được cho là mở rộng xa hơn hàng nghìn lần.[85]

Nhật quyển

Nhật quyển được chia thành 2 vùng tách biệt. Vùng bên trong được giới hạn bởi biên giới kết thúc sốc (termination shock). Vùng ngoài giới hạn bởi biên giới kết thúc sốc và nhật mãn gọi là nhật bao. Gió Mặt Trời chuyển động với vận tốc gần 400 km/s cho đến khi nó va chạm với gió liên sao hay chính là dòng plasma trong môi trường liên sao. Tại điểm mà gió Mặt Trời có vận tốc nhỏ hơn vận tốc của âm thanh được gọi là biên giới kết thúc sốc (termination shock), cách Mặt Trời gần 80-100 AU theo hướng ngược với hướng gió Mặt Trời (ngược với hướng chuyển động của Mặt Trời trong môi trường liên sao) và Voyager 1 và Voyager 2 đều đã vượt qua biên giới kết thúc sốc và đi vào nhật bao, ở các khoảng cách tương ứng 94 và 84 AU tính từ Mặt Trời.[89][90] Biên giới ngoài cùng của nhật quyển, nhật mãn, là vị trí mà gió Mặt Trời hầu như không còn và là điểm bắt đầu cho môi trường liên sao.[29]

Sự hình thành và hình dáng của biên giới nhật quyển được cho là tác động ảnh hưởng bởi tương tác kiểu thủy động lực học của gió Mặt Trời với môi trường tự nhiên liên sao. [ 87 ] Bên ngoài nhật mãn, ở khoảng cách 230 AU, người ta cho rằng sống sót vùng sốc hình cung ( bow shock ), vùng plasma hình thành lên do Mặt Trời hoạt động trong Ngân Hà. [ 91 ]Chưa có tàu khoảng trống nào vượt qua biên giới nhật mãn, do vậy người ta vẫn chưa biết các đặc tính đơn cử trong thiên nhiên và môi trường liên sao địa phương. Trong vài thập kỉ tới các tàu Voyager của NASA sẽ vượt qua nhật mãn và gửi về Trái Đất các thông tin giá trị về mức độ bức xạ và đặc thù môi trường tự nhiên liên sao. [ 92 ] Hiểu biết về yếu tố làm thế nào mà lá chắn nhật quyển bảo vệ Hệ Mặt Trời khỏi tia vũ trụ vẫn còn nghèo nàn. 1 nhóm nghiên cứu và điều tra được NASA tương hỗ ngân sách đã tăng trưởng sơ bộ dự án Bất Động Sản ” Vision Mission ” nhằm mục tiêu gửi 1 tàu thám hiểm đến vùng nhật quyển xa xôi. [ 93 ] [ 94 ]

Đám mây Oort

Minh họa đám mây Oort, đám mây Hills, và vành đai Kuiper ( inset )Đám mây Oort là 1 đám mây giả thuyết có dạng cầu chứa tới 1.000 tỉ vật thể cấu trúc từ băng. Người ta cho rằng đám mây này là nơi xuất phát của các sao chổi chu kỳ luân hồi dài và đám mây nằm cách Mặt Trời khoảng chừng 50.000 AU ( gần 1 năm ánh sáng ( LY ) ), và có năng lực cách xa tới 100.000 AU ( 1,87 LY ). Có thể đám mây này được hình thành từ các vật thể và sao chổi mà đã bị đẩy ra từ hệ Mặt Trời bên trong do tương tác mê hoặc với các hành tinh vòng ngoài. Các vật thể trong đám mây Oort hoạt động rất chậm, bị nhiễu loạn bởi các sự kiện xảy ra tiếp tục như va chạm, tác động ảnh hưởng mê hoặc của các sao ở gần hay lực thủy triều có nguồn gốc từ Ngân Hà. [ 95 ] [ 96 ]

Sedna

90377 Sedna ( khoảng cách trung bình đến Mặt Trời 525,86 AU ) là 1 thiên thể kích cỡ Sao Diêm Vương màu đỏ, quay trên 1 quỹ đạo elip khổng lồ với điểm cận nhật cách 76 AU và điểm viễn nhật cách 928 AU, nó mất khoảng chừng 12.050 năm để triển khai xong 1 vòng quỹ đạo. Mike Brown, người đã phát hiện ra nó vào năm 2003, cho rằng thiên thể này không hề là một phần của đĩa phân tán hay vành đai Kuiper do điểm viễn nhật của nó quá xa để hoàn toàn có thể chịu tác động ảnh hưởng của sự di trú Sao Hải Vương. Brown và các nhà thiên văn khác xem nó là vật thể tiên phong trong 1 lớp các vật thể mới, gồm có cả vật thể 2000 CR105 có điểm cận nhật 45 AU và điểm viễn nhật 415 AU với chu kỳ luân hồi quỹ đạo của nó là 3.420 năm. [ 97 ] Brown xếp các vật thể này vào ” Đám mây Oort bên trong ” do đám mây này hoàn toàn có thể được hình thành trải qua 1 quy trình tương tự như với đám mây Oort mặc dầu nó gần hơn rất nhiều so với Mặt Trời. [ 98 ] Sedna có năng lực là 1 hành tinh lùn Tuy vậy hình dạng của vật thể này vẫn chưa được xác lập rõ ràng .

Biên giới

Biên giới hay rìa của hệ Mặt Trời vẫn chưa được xác lập rõ ràng. Có thể định nghĩa biên giới của hệ bằng ảnh hưởng tác động của trường mê hoặc của Mặt Trời, và các nhà thiên văn ước đạt lực mê hoặc Mặt Trời tiêu biểu vượt trội so với mê hoặc của các ngôi sao 5 cánh ở gần là khoảng chừng 2 năm ánh sáng ( 125.000 AU ). trái lại, có các nhìn nhận thấp cho nửa đường kính của đám mây Oort không lớn hơn 50.000 AU. [ 99 ] Mặc dù có các vật thể như Sedna được tò mò, nhưng vùng giữa vành đai Kuiper và đám mây Oort, vùng có nửa đường kính vài chục nghìn AU, vẫn chưa được phác họa vừa đủ. Cũng có các điều tra và nghiên cứu, tìm hiểu và khám phá lúc bấy giờ về vùng nằm giữa Sao Thủy và Mặt Trời. [ 100 ] Nhiều vật thể có lẽ rằng chưa được phát hiện trong vùng xa xôi của Hệ Mặt Trời .

Trong dải Ngân Hà

Hệ Mặt Trời nằm trong dải Ngân Hà, một thiên hà xoắn ốc có thanh với đường kính khoảng 100.000 năm ánh sáng và chứa khoảng 200 tỷ ngôi sao.[101] Mặt Trời nằm ở 1 trong các nhánh xoắn ốc rìa ngoài của Ngân Hà, gọi là nhánh Lạp Hộ hay Móng Địa phương (Local Spur).[102] Khoảng cách từ Mặt Trời đến trung tâm thiên hà vào khoảng 25.000 và 28.000 năm ánh sáng,[103] nó chuyển động với vận tốc 220 km/s, và hoàn tất 1 chu kỳ trong khoảng 225-250 triệu năm. Chu kỳ này được gọi là năm thiên hà của hệ Mặt Trời.[104] Nhật đỉnh (solar apex), điểm chỉ hướng di chuyển của Mặt Trời trong không gian liên sao, nằm gần chòm sao Hercules theo hướng của vị trí hiện tại của ngôi sao sáng Vega.[105] Mặt phẳng chứa đường hoàng đạo của hệ Mặt Trời (mặt phẳng hoàng đạo) nghiêng 1 góc khoảng 60° so với mặt phẳng thiên hà.[f]

Vị trí của Thái Dương hệ trong thiên hà cũng là 1 tác nhân quan trọng trong sự tiến hóa của sự sống trên Trái Đất. Quỹ đạo của hệ có hình gần tròn và hệ quay với tốc độ bằng với tốc độ của các nhánh xoắn ốc, điều này có nghĩa là năng lực hệ Mặt Trời đi xuyên qua nhánh xoắn ốc là rất hiếm. Mặt khác các siêu tân tinh nguy hại tiềm tàng ở trong nhánh xoắn ốc cũng nằm ở xa Thái Dương hệ, điều này được cho phép Trái Đất có 1 chu kỳ luân hồi dài về sự không thay đổi của thiên nhiên và môi trường liên sao hỗ trợ cho sự sống tiến hóa. [ 106 ] Hệ Mặt Trời cũng nằm ở phía ngoài của vùng tập trung chuyên sâu đông đúc các ngôi sao 5 cánh trong TT Ngân Hà. Khi ở gần TT thiên hà, lực kéo mê hoặc từ các sao ở gần gây nhiễu loạn các vật thể thuộc đám mây Oort và đẩy nhiều sao chổi về phía hệ Mặt Trời bên trong, làm tăng năng lực xảy ra các va chạm thảm họa giữa Trái Đất và các vật thể gây hủy hoại sự sống. Bức xạ với cường độ mạnh từ TT thiên hà cũng tác động ảnh hưởng mạnh đến sự tăng trưởng của các tổ chức triển khai sống phức tạp. [ 107 ] Ngay cả với vị trí của hệ Mặt Trời lúc bấy giờ, Một vài ít nhà khoa học giả thuyết là các vụ nổ siêu tân tinh gần đây cũng ảnh hưởng tác động đến sự sống trong quá khứ 35.000 năm trước do các mảnh vụn từ siêu tân tinh, hạt bụi chứa phóng xạ mạnh và các sao chổi kích cỡ lớn hướng về phía Mặt Trời. [ 108 ]

Môi trường lân cận

Môi trường lân cận của hệ Mặt Trời trong thiên hà còn được gọi là Đám mây liên sao địa phương hay Bông Địa phương, 1 vùng đám mây đậm đặc nằm trong 1 vùng thưa thớt hơn gọi là Bong bóng địa phương, 1 hốc có hình dáng chiếc đồng hồ đeo tay cát trong môi trường tự nhiên liên sao với kích cỡ gần 300 năm ánh sáng. Bong bóng này bị trộn lẫn bởi plasma nhiệt độ cao cho thấy nó là loại sản phẩm của một vài vụ nổ siêu tân tinh gần đây. [ 109 ]Có tương đối ít các ngôi sao 5 cánh trong vòng 10 năm ánh sáng ( 95.000 tỷ km ) so với Mặt Trời. các sao gần nhất là hệ 3 ngôi sao 5 cánh Alpha Centauri, nằm cách xa 4,4 năm ánh sáng. Alpha Centauri A và B là cặp sao có kích cỡ gần bằng Mặt Trời nằm gần nhau, trong khi sao lùn đỏ nhỏ Alpha Centauri C ( còn gọi là Proxima Centauri ) quay quanh cặp sao này ở khoảng cách 0,2 năm ánh sáng và là ngôi sao 5 cánh gần Mặt Trời nhất. các ngôi sao 5 cánh gần tiếp theo là sao lùn đỏ Barnard ( cách xa 5,9 năm ánh sáng ), Wolf 359 ( 7,8 ly ) và Lalande 21185 ( 8,3 ly ). Ngôi sao lớn nhất trong vòng nửa đường kính 10 năm ánh sáng là Sirius, 1 ngôi sao 5 cánh sáng trong dãy chính với khối lượng gần bằng 2 lần khối lượng Mặt Trời. Sao lùn trắng Sirius B quay quanh ngôi sao 5 cánh này. Hệ sao đôi này nằm cách Mặt Trời 8,6 năm ánh sáng. Còn lại là hệ sao đôi lùn đỏ Luyten 726 – 8 ( 8,7 ly ) và 1 sao lùn đỏ Ross 154 ( 9,7 ly ). [ 110 ] Ngôi sao đơn giống Mặt Trời gần tất cả chúng ta nhất là sao Tau Ceti nằm cách xa 11,9 năm ánh sáng. Nó có khối lượng bằng 80 Xác Suất khối lượng Mặt Trời nhưng độ sáng chỉ bằng 60 Tỷ Lệ so với độ sáng của Mặt Trời. [ 111 ] Ngôi sao gần nhất có hành tinh ngoại hệ quay quanh là sao Epsilon Eridani, 1 ngôi sao 5 cánh đỏ hơn và mờ hơn so với Mặt Trời nằm cách Thái Dương hệ 10,5 năm ánh sáng. Ngôi sao này có một hành tinh quay quanh được xác nhận là Epsilon Eridani b, với khối lượng bằng 1,5 lần khối lượng của Mộc Tinh và quay quanh ngôi sao 5 cánh mất 6,9 năm. [ 112 ]

Sự hình thành và tiến hóa

Hệ Mặt Trời hình thành từ sự suy sụp mê hoặc của một đám mây phân tử khổng lồ cách đây 4,568 tỷ năm trước. [ 113 ] Đám mây tổ tiên này có kích cỡ vài năm ánh sáng và có năng lực một vài ngôi sao đã sinh ra từ đám mây này. [ 114 ] Tinh vân Mặt Trời có năng lực hình thành từ mảnh vụn của vụ nổ sao siêu mới thế hệ trước. [ 115 ]Khi vùng mà trong tương lai sẽ trở thành hệ Mặt Trời, gọi là tinh vân tiền Mặt Trời, [ 116 ] suy sụp, theo định luật bảo toàn động lượng thì đĩa tinh vân này sẽ quay nhanh hơn. Vùng TT, nơi tập trung chuyên sâu nhiều khối lượng nhất, sẽ trở lên nóng hơn so với đĩa quay xung quanh. [ 114 ] Khi tinh vân này co lại và quay nhanh hơn, nó trở lên phẳng hơn và hình thành đĩa tiền hành tinh quay quanh tâm với đường kính gần 200 AU [ 114 ] và 1 vùng TT nóng, đậm đặc chứa tiền sao. [ 117 ] [ 118 ] Ở thời gian này trong sự tiến hóa của nó, Mặt Trời được cho là ngôi sao 5 cánh thuộc kiểu sao T Tauri. Việc điều tra và nghiên cứu sao T Tauri cho thấy chúng thường đi kèm với một đĩa tiền hành tinh với khối lượng đĩa bằng 0,001 – 0,1 khối lượng Mặt Trời, và phần nhiều khối lượng của tinh vân thuộc về ngôi sao 5 cánh. [ 119 ] Các hành tinh hình thành từ sự bồi tụ từ đĩa này. [ 120 ]Trong vòng 50 triệu năm, áp suất và tỷ lệ của hiđrô trong lõi của tiền sao trở lên đủ lớn để mở màn thực thi phản ứng tổng hợp hạt nhân. [ 121 ] Nhiệt độ, vận tốc phản ứng, áp suất và tỷ lệ tăng cho đến khi đạt đến sự cân đối thủy tĩnh, trong đó nhiệt năng cân đối với lực hút mê hoặc của chính ngôi sao 5 cánh. Ở quy trình tiến độ này, Mặt Trời trở thành 1 ngôi sao 5 cánh thuộc dãy chính. [ 122 ]Hệ Mặt Trời như tất cả chúng ta biết ngày này sẽ còn sống sót cho đến khi Mặt Trời kết thúc sự tiến hóa của nó trong dãy chính của biểu đồ Hertzsprung-Russell. Khi Mặt Trời bị giảm hiđrô nguyên vật liệu, nhiệt năng từ các phản ứng tổng hợp hạt nhân bị giảm khiến cho Mặt Trời khởi đầu bị suy sụp. Sự suy sụp này làm tăng áp suất tại lõi, hỗ trợ cho quy trình phản ứng tổng hợp hạt nhân diễn ra nhanh hơn. Kết quả là Mặt Trời tăng độ sáng với vận tốc khoảng chừng 10 % trong mỗi 1,1 tỷ năm. [ 123 ]Trong vòng khoảng chừng 5,4 tỷ năm tới, hiđrô tại lõi Mặt Trời sẽ bị đổi khác hàng loạt thành heli, và Mặt Trời kết thúc quy trình tiến độ ở dãy chính. Khi phản ứng tổng hợp hiđrô ngừng lại, lõi sẽ liên tục co lại, làm tăng áp suất và nhiệt độ, gây ra phản ứng tổng hợp heli. Heli bị tổng hợp trong 1 lõi nóng hơn và nguồn năng lượng giải phóng từ quy trình tổng hợp này sẽ lớn hơn so với quy trình tổng hợp hiđrô. Ở quá trình này, lớp bên ngoài của Mặt Trời sẽ lan rộng ra gấp 260 lần so với đường kính hiện tại ; Mặt Trời sẽ trở thành sao khổng lồ đỏ. Vì sự tăng diện tích quy hoạnh mặt phẳng khổng lồ của nó, mặt phẳng Mặt Trời sẽ lạnh hơn đáng kể so với khi nó ở dãy chính ( lạnh nhất với nhiệt độ 260 0C ). [ 124 ]Thậm chí, heli tại lõi cũng sẽ hết sạch với vận tốc nhanh hơn so với hiđrô, và thời hạn Mặt Trời tổng hợp heli chỉ bằng phần nhỏ so với thời hạn của quy trình tiến độ tổng hợp hiđrô. Mặt Trời có khối lượng không đủ lớn để liên tục thực thi phản ứng tổng hợp các nguyên tố nặng hơn, và phản ứng hạt nhân tại lõi sẽ tắt. Các lớp bên ngoài sẽ bị thổi vào khoảng trống, để lại sao lùn trắng, 1 thiên thể rất đậm đặc, có khối lượng bằng 50% khối lượng Mặt Trời nhưng kích cỡ chỉ bằng size của Trái Đất. [ 125 ] các lớp vật chất bị thổi vào khoảng trống sẽ hình thành tinh vân hành tinh, trả lại thiên nhiên và môi trường liên sao vật tư đã hình thành nên hệ Mặt Trời . Các mốc thời hạn trong cuộc sống của Mặt Trời .

Khám phá và thám hiểm

Lịch sử

Các hành tinh tính từ Sao Thổ vào đến Mặt Trời từng được các nhà thiên văn thời xưa biết đến, họ quan sát sự chuyển dời của các vật thể đó so với các vùng có vẻ như đứng im gồm các ngôi sao 5 cánh. Sao Kim và Sao Thủy vốn đã được quan sát là 2 vật thể riêng không liên quan gì đến nhau dù có khó khăn vất vả trong việc liên kết ” Sao hôm ” và ” Sao mai “. Họ cũng biết rằng 2 vật thể không phải 1 điểm, Mặt Trời và Mặt Trăng, vận động và di chuyển trên cùng một cái nền đứng im. Tuy vậy, sự hiểu biết về trạng thái của các vật thể đó trọn vẹn thiếu đúng chuẩn .Trạng thái và cấu trúc của Hệ Mặt Trời vẫn còn bị hiểu biết chưa đúng mực vì tối thiểu là hai nguyên do. Trái Đất đã bị coi là đứng im, và sự vận động và di chuyển của các vật thể trên trời cho nên vì thế cũng chỉ là bên ngoài. Mặt Trời đã bị coi là quay quanh Trái Đất, giống như các hành tinh hay thiên thể khác. Quan niệm này về thiên hà, với Trái Đất ở TT, được goi là hệ địa tâm. Nhiều vật thể trong hệ mặt trời và các hiện tượng kỳ lạ không được nhận thức khá đầy đủ nếu không có trợ hỗ trợ của kỹ thuật .Trong vài trăm năm qua, các văn minh về nhận thức và kỹ thuật đã hỗ trợ con người hiểu thêm nhiều về hệ mặt trời. Sự nhận thức tiên phong và có tính nền tảng là cuộc cách mạng của Nicolaus Copernicus cho rằng các hành tinh quay quanh Mặt Trời – hệ nhật tâm – với Mặt Trời ở TT. Điều đã gây sốc nhất và gây ra nhiều tranh cãi nhất không phải là việc Mặt Trời ở TT mà là Trái Đất thuộc ngoại biên, và có quỹ đạo. Các hành tinh vốn chỉ bị coi đơn thuần là các điểm trên khung trời, nhưng nếu chính Trái Đất là 1 hành tinh, có lẽ rằng các hành tinh khác, giống như Trái Đất, chỉ là các hình cầu to lớn và cứng chắc .Về mặt triết học, có 1 số ít sự chống đối thuyết nhật tâm. Tình trạng tự nhiên của các vật khoáng, nặng giống như Trái Đất được tin rằng sẽ nằm im. Các hành tinh được cho rằng được cấu trúc từ vật tư riêng không liên quan gì đến nhau, phù du ( sớm nở tối tàn ) và nhẹ. Mọi người từng tin rằng sự hoạt động của Trái Đất quanh Mặt Trời làm cho không khí biến mất khỏi mặt phẳng. Nếu Trái Đất đang hoạt động, các nhà thiên văn học đã hoàn toàn có thể quan sát thị sai của các ngôi sao 5 cánh, như việc các ngôi sao 5 cánh Open và đổi khác vị trí so với các vật thể ở xa hơn vì nguyên do Trái Đất biến hóa vị trí .Sự ý tưởng ra kính viễn vọng cho phép 1 sự văn minh cơ bản về kỹ thuật trong việc tò mò Hệ Mặt Trời, với kính viễn vọng đã được nâng cấp cải tiến của Galileo Galilei đã được cho phép nhiều quyền lợi trong việc tò mò các vệ tinh của các hành tinh khác, đặc biệt quan trọng là 4 vệ tinh lớn của Sao Mộc. Điều này cho thấy toàn bộ các vật thể trong vụ trụ không quay quanh Trái Đất. Tuy vậy, hoàn toàn có thể ý tưởng lớn nhất của Galileo là việc hành tinh Sao Kim có các pha giống như Mặt Trăng, chứng tỏ rằng nó phải quay quanh Mặt Trời .Sau đó, vào năm 1678, Isaac Newton dùng định luật vạn vật mê hoặc của mình lý giải lực vừa giữ Trái Đất quay quanh Mặt Trời vừa giữ không khí không bị cuốn đi mất .Cuối cùng, năm 1838, nhà thiên văn Friedrich Wilhelm Bessel đã thành công xuất sắc trong việc đo đạc thị sai của ngôi sao 5 cánh 61 Cygni, chứng tỏ một cách thuyết phục rằng Trái Đất đang hoạt động .

Ngày nay

Với sự khởi đầu thời đại thiên hà, 1 thời đại vĩ đại trong thám hiểm đã được triển khai bởi các chuyến thăm dò thiên hà không người lái được tổ chức triển khai và triển khai bởi nhiều cơ quan ngoài hành tinh. Tàu thăm dò ngoài hành tinh tiên phong hạ cánh xuống 1 vật thể ngoài Trái Đất trong Hệ Mặt Trời là tàu thám hiểm Luna 2 của Liên Xô, nó hạ cánh xuống Mặt Trăng năm 1959. Từ đó, ngày càng có nhiều hành tinh khác ở xa hơn được tò mò, với việc tàu ngoài hành tinh đáp xuống Sao Kim năm 1965, Sao Hoả năm 1976, tiểu hành tinh 433 Eros năm 2001, và vệ tinh Titan của Sao Thổ năm 2005. Các tàu thiên hà cũng đã tiến gần tới các hành tinh khác như Mariner 10 đi qua Sao Thuỷ năm 1973 .Tàu vũ trụ tiên phong tò mò các hành tinh vòng ngoài là Pioneer 10, bay qua Sao Mộc năm 1973. Pioneer 11 là tàu tiên phong đến Sao Thổ năm 1979. Các tàu vũ trụ Voyager đã làm một cuộc hành trình dài vĩ đại đến các hành tinh vòng ngoài sau khi chúng được phòng lên năm 1977, với 2 tàu bay qua Sao Mộc năm 1979 và Sao Thổ năm 1980 – 1981. Voyager 2 sau đó tiến sát đến Sao Thiên Vương năm 1986 và Sao Hải Vương năm 1989. Các tàu Voyager hiện đang ở bên ngoài quỹ đạo của Sao Diêm Vương, và đến tháng 6/2006, tàu Voyager 1 đã vượt qua ranh giới của Hệ Mặt Trời .Sao Diêm Vương vẫn chưa được thăm viếng bởi 1 tàu thiên hà nào của con người dù việc NASA phóng tàu New Horizons vào tháng 1/2006 hoàn toàn có thể làm đổi khác điều này. Tàu dự trù sẽ bay qua Sao Diêm Vương vào tháng 7 / năm ngoái và sau đó sẽ điều tra và nghiên cứu thêm càng nhiều càng tốt về các vật thể trong vành đai Kuiper .Thông qua các vụ tò mò không người lái đó, con người đã hoàn toàn có thể có các ảnh chụp gần hơn về hầu hết các hành tinh và trong trường hợp hoàn toàn có thể hạ cánh, triển khai các xét nghiệm về đất đá và khí quyển của chúng. Các cuộc thám hiểm có người lái, dù sao, cũng chỉ đưa con người tới được Mặt Trăng, trong chương trình Apollo. Lần cuối con người đáp tàu lên Mặt Trăng là vào năm 1972, nhưng các sự tò mò gần đây về băng trong các miệng núi lửa sâu ở các vùng cực của Mặt Trăng đã gợi nên sáng tạo độc đáo suy đoán rằng tàu vũ trụ có người lái hoàn toàn có thể quay lại Mặt Trăng trong thập kỷ tới hoặc sau đó. Chương trình phóng tàu ngoài hành tinh có người lái đến Sao Hỏa đã được Dự kiến từ nhiều thế hệ các người yêu thích thiên văn. Châu u ( ESA ) hiện đang đặt kế hoạch phóng tàu có người lái mày mò Mặt Trăng và Sao Hỏa như một phần của Chương trình thám hiểm Aurora được xác nhận vào năm 2001. Hoa Kỳ cũng có 1 chương trình tương tự như gọi là Tầm nhìn Thám hiểm Vũ trụ năm 2004 .Tàu Rosetta sau 10 năm 8 tháng du hành đã tiếp cận sao chổi 67P / Churyumov-Gerasimenko năm năm trước và thả tàu thăm dò robot Philae xuống đó ngày 12/11, trở thành lần tiên phong thiết bị của con người chạm sao chổi ngoài ngoài hành tinh. [ 126 ]

Xem thêm

Chú thích

Tham khảo

Giới thiệu: Quang Sơn

Quang Sơn là giám đốc hocdauthau.com - Kênh thông tin học đấu thầu, kiến thức tổng hợp, công nghệ, đời sống.

0 Shares
Share
Tweet
Pin